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Although formal hypothesis tests provide a convenient framework for displaying the statistical
results of empirical comparisons, standard tests should not be used without consideration of
underlying measurement error structure. As part of the validation process, predictions of
individual blood lead concentrations from models with site-specific input parameters are often
compared with blood lead concentrations measured in field studies that also report lead
concentrations in environmental media (soil, dust, water, paint) as surrogates for exposure.
Measurements of these environmental media are subject to several sources of variability,
including temporal and spatial sampling, sample preparation and chemical analysis, and data entry
or recording. Adjustments for measurement error must be made before statistical tests can be
used to empirically compare environmental data with model predictions. This report illustrates the
effect of measurement error correction using a real dataset of child blood lead concentrations for
an undisclosed midwestern community. We illustrate both the apparent failure of some standard
regression tests and the success of adjustment of such tests for measurement error using the
SIMEX (simulation-extrapolation) procedure. This procedure adds simulated measurement error
to model predictions and then subtracts the total measurement error, analogous to the method of
standard additions used by analytical chemists. Environ Health Perspect 106(Suppl 6):
1541-1550 (1998). http://ehpnetl.niehs. nih.gov/docs/1998/Suppl-6/1 541-1 550marcus/
abstract.html
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This paper discusses the application of a
statistical procedure-measurement error
correction-that allows essential adjust-
ments to empirical comparisons between
observed and predicted data. There is little
question that some empirical comparisons
are needed to validate a model (i.e., to
assess the adequacy of the model to predict
the outcome of proposed interventions).
Measurement error correction removes
some of the biases associated with these
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empirical comparisons. As part of the
process of validation, this statistical pro-
cedure strengthens the confidence in
the model.

For the integrated exposure uptake
biokinetic (IEUBK) model, the environ-
mental exposure media are air, water, diet,
residential yard soil, and residential dust
including multiple source contributions
from paint, school or day care, and sec-
ondary residences. Measurements of expo-
sure to any of these media are likely to be
inaccurate estimates of actual exposure
because of such factors as analytical error,
repeat sampling variability, and location
variability, and are not likely to completely
characterize a child's actual long-term lead
intake from that medium at that particular
point in time. This measurement error is
likely to be large enough to substantially
attenuate the estimated relationship between
observed blood lead and blood lead that is
predicted from the model using the noisy
input variables associated with that child's
exposure. Similar effects are likely to
occur in all modeling efforts, including
the linear slope factor models that have
been developed for long-term adult lead
exposure by Bowers et al. (1) and by the

U.S. Environmental Protection Agency
(U.S. EPA) (2). In the worst case, mea-
surement error may completely obscure the
relationship between observed and pre-
dicted blood lead. Off-the-shelf statistical
remedies for the problem of measurement
error correction are not readily available.
For the simple regression comparisons, the
simulation and extrapolation (SIMEX)
method proposed by Carroll et al. (3) may
be adequate to estimate the true parameters
relating observed and predicted values.

When empirical data are used to evaluate
the model, there are several conventional
statistical tests that can be applied to test
the null hypothesis that the model output
is wrong. These involve showing that some
form of the predicted value does not equal
the same form of the observed value (e.g.,
typical predicted . typical observed). The
simplest empirical comparison is that of a
regression of observed values on predicted
values (the usual variables are blood lead
concentration, or the logarithm of blood
lead, or the exceedance of blood lead over a
health-based level of concern). If the usual
assumptions of normal residuals and linear-
ity are satisfied, we would test slope= 1,
intercept = 0. But even in a well-calibrated
model, when evaluated against an indepen-
dent dataset, the typical result is slope less
than 1, intercept greater than 0, even when
the observed and predicted means are
equal. The most plausible explanation, in
our opinion, is that the data that are gener-
ally available as input for such models are
not concurrent measurements of lead con-
centrations or loadings in environmental
media in the residential or occupational
setting in which that individual subject is
believed to receive the exposure measured
as blood lead.

If the purpose of the regression
comparison is a formal test of the hypothesis
(slope = 1, mean [observed] = mean [pre-
dicted]), then the distributional properties
(normal, log-normal, etc.) of the adjusted
estimates samples are critical in making
accurate inferences. This may be even more
critical in the logistic regression version of
the test, comparing predicted and observed
incidence of elevated blood leads, which
also requires additional model assumptions
about the intrinsic inter- and intraindividual
variability of blood lead.

Measurement errors include sampling
and analytical biases, instrument reading and
recording errors, and temporal and spatial
sampling sample collection discrepancies.
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These errors may show diverse forms with
diverse consequences, but in general are
likely to introduce distortions of the pre-
dicted values without regard to the form of
the predictive model. On the other side,
the outcome measures against which the
predictions are to be compared, in this case
blood lead concentration, are also subject
to measurement errors, including sampling
and subject selection biases.

Limitations of Statistical
Hypothesis Tests
Because of our concerns about the validity
of formal statistical tests in the face of
measurement error of unknown attrib-
utes, the validation strategy document for
the IEUBK model (4) recommends that
formal pass-fail statistical tests not be
applied in empirical comparisons. The
role of hypothesis testing in scientific
inference has been hotly debated since its
earliest uses, and remains a controversial
subject for both statisticians and the sub-
ject-matter scientists who use statistical
methods. However, if caution is used, for-
mal hypothesis-testing methods for pre-
dictive models may be extremely helpful
in diagnostic studies that estimate the
range of conditions beyond which one
might encounter some model inade-
quacies, or circumstances in which sup-
plementary information needs to be
collected. We have elaborated on five
major areas of concern.

Observational data may not have been
collected for the purposes of validating
the model. With the notable exception
of the lead isotope study in five adult
males carried out by Rabinowitz et al.
(5-8), few observational studies of
child lead exposure at lead-contami-
nated sites have been carried out for
the purpose of validating any specific
parameter or group of parameters in a
predictive model. Descriptive analyses
of cross-sectional epidemiology studies
have been performed, but data were
not collected to validate model para-
meters. The models were fitted to
cross-sectional epidemiologic studies
with standard statistical curve-fitting
approaches, but the parameters esti-
mated from the models did not usually
have any comparable biologic counter-
part. Representativeness, generalizabil-
ity, and sample protocols are other
serious issues that restrict the use of
these data for model evaluation.
The sample size may be too small,
allowing inadequate power to detect

model deficiencies or to discriminate
among competing models. If the num-
ber of complete cases (paired blood
lead and environmental lead data suffi-
cient for model fitting and evaluation)
is too small, then the uncertainty about
goodness-of-fit statistics (as expressed
by standard errors or confidence inter-
vals) will be very large. Even models
that fit poorly will not be distinguish-
able from the null hypotheses that the
model fit is adequate. The statistical
tests will have little power to detect
failures of the prediction model.
The sample size may be so large that
even useful, moderately predictive
models may be rejected by a statistical
test for deviations that have little prac-
tical importance. If the sample size is
very large, then even relatively small
deviations of the model values from
observed values are likely to be
declared statistically significant. Sup-
pose, for example, that no water lead
samples are collected in an epidemiol-
ogy study. The IEUBK model may
assume a standard lead intake of about
0.5 liters per day at a concentration of
4 pg/liter, or about 2 pg/day. If in fact
the tap water lead concentration is neg-
ligible, then the excess of slightly less
than 2 pg/day in the IEUBK model
predictions would probably be signifi-
cant in studies with more than 500 to
1000 children.

* Measurement of exposure may be
inaccurate, biasing many standard stat-
istical tests. The potentially serious
difficulties that exposure measurement
errors may cause has only recently
been recognized. Measurement errors
in exposure variables and other covari-
ates used as model input can propagate
through the model and produce an
inaccurate model prediction. Carroll
and Galindo (9) illustrate conclusively
how measurement error can distort the
apparent relation between exposure
and biologic response, and will very
probably bias the test statistics in the
direction of attenuating the apparent
predictiveness of the model.

* Blood lead is not necessarily a "gold
standard" for model evaluation. Tem-
poral and behavioral influences on
exposure, such as the season of the
year, the level of information that the
child, the child's parents, or caretakers
have about lead hazards, and the amount
of time that the child spends away from
home can be significant modifiers of

exposure in determining child blood
lead. Seasonal rhythms of blood lead
concentrations discussed by the U.S.
EPA (10), Hogan et al. (11), and
Mushak (12) in this monograph pro-
vide many examples of the assessment
and interpretation of several modifying
factors in evaluation of lead models.
Classical statistical tests mistakenly

assume that the predicted values, prediction
intervals, and classification of elevated
blood lead concentrations based on the
model are statistically accurate predictors of
what they purport to predict. Both system-
atic and random errors in epidemiologic
studies influence the accuracy of the pre-
dictors. Random errors may occur when
single, individual samples do not take into
account temporal variability; when spatial
samples of yard soil and house dust do not
represent the actual play areas and contact
surfaces of the child; when exposure has
been modified by environmental factors
such as groundcover or dust loading; or by
behavioral factors such as housecleaning
practices, choice of play area, hand-washing
frequency, and mouthing of nonfood
objects. Random errors of sample collection
and processing may also occur when the
sample is contaminated by other environ-
mental media, when the sample is modified
during transit and storage, or when the
sample data are misrecorded.

Systematic errors might occur if
instruments are miscalibrated, measure-
ments are taken at inappropriate locations
or seasons, no measurements or estimates
are made of nonresidential exposure, or
the subjects are not representative of the
same sociodemographic or ethnic groups
as the model.

Statistical Tests of
Hypotheses That Evaluate
Predicted Values
We will illustrate a few of the potential
problems in applying formal statistical
goodness-of-fit tests without considering
the possible effects of measurement error.
The simplest form is a linear regression test
that asks the question: Does the observed
value equal model-predicted value? Most
formal evaluations ask some variant of this
question. Frequently, a new variable is con-
structed to convert the hypothesis to the
univariate form. Typical forms of the
goodness-of-fit test are the following:

Does the observed value minus model-
predicted value equal zero (showing that
the predictions are unbiased)?
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Does the ratio of observed value to
model-predicted value equal one (in which
case the predictions are relatively unbiased)?

Does the log of the observed value
minus the log of the model-predicted value
equal zero (in which case the predictions
are relatively unbiased)?

In order to establish a general notation
for these tests, the algebraic notation is
used here:

d= Y-M, [1]

where
d= prediction error,
Y= observed value (e.g., blood lead or

log blood lead), and
M= modeled value analogous to Y(M is

a model prediction not necessarily derived
from an optimized fit of observed values).

Of the many possible statistical
hypotheses of model adequacy that can be
tested using a set of paired values of an
observation Yand its model prediction M,
five are listed below as null hypotheses
Ho(1) to H0(5). Figure 1 illustrates the
graphical interpretation of these five statis-
tical hypotheses, plus two additional
hypotheses described in the next section.

Ho(1): mean d= 0

Hypothesis Ho(I) expresses a common
concept: Although some differences
between observed values and predicted val-
ues are expected, there should be no differ-
ence between the mean observation and the
mean prediction from a good model. Mean
could be replaced by some other measure of
typical value, such as the median or geo-
metric mean, if prediction errors (d) have
an asymmetric or heavy-tailed distribution.

Ho(2): mean Y= mean M

Or, if Y=log blood lead, then Ho(2):
geometric mean Y= geometric meanM

Hypothesis Ho(2) is more general than
Ho(I) and addresses a common situation
in epidemiologic studies in which data sets
may have some records in which the data
are not paired. That is, the environmental
measurements for calculating a value ofM
are available, but not a corresponding
blood lead observation Y; or conversely, Y
is available, but there is not enough envi-
ronmental data to calculate a correspond-
ing value of M. If the missing values are
missing completely at random and the
existing data are representative of the miss-
ing data, then the observed and modeled
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Figure 1. Diagrammatic illustration of the statistical tests for hypotheses 1-o(1) through Ho0(7). (A) illustrates the
condition in HOll1) where the difference between observed and predicted blood lead concentrations is expected to
equal zero. (B) illustrates Ho(2); the observed mean equals the predicted mean. (C) expands Ho(1) to show that,
according to Ho(3), the slope of observed vs. predicted should equal one and pass through the origin. (D,E) repre-
sent Ho(4) and Ho(5), which are two different logarithmic transformations of Ho(3), and test the condition that the
slope = 1 and intercept= 0. These are the two tests that are used in this paper for the SIMEX procedure for mea-
surement error adjustments. (F,G) illustrate two additional hypotheses that evaluate intervals and ranges, both of
which are important for risk assessment. Hypothesis Ho(6) tests the accuracy of predicting a specific upper tail
interval (e.g., 95%), and hypothesis 1-1(7) tests the validity of the prediction of the number of children with blood
lead concentrations exceeding 10 pg/dl. Correctly predicted blood lead concentrations are in quadrants and Ill,
incorrectly predicted are in 11 and IV.
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datasets can be compared even though not
all cases are paired.

Hypotheses that use the regression
model format are

Ho(3): Y= A + B * M+ error, slope B= 1,
intercept A= 0

Ho(4): log( Y) = K+ L* log(M) + error,
K= 0 and L= 1

Ho(5): log( Y) = log(Bo + Bp* M) + error,
Bp= 1 and Bo = 0

Ho(3) is a refinement of Ho(1), and is
equivalent to the composite hypothesis that
B= 1 and the mean value of d= 0.

The steps in carrying out a classical test
of Ho(3), [or Ho(4) if log transformed] are

Step 1: Fit a straight line to paired Yand
M values by ordinary least squares, produc-
ing an estimated intercept A, a slope esti-
mate B, and an estimated residual standard
deviation S.

Step 2: Calculate the mean paired
difference d and the variance of the
predicted values SM.

Step 3: Reject Ho(3) and conclude that
predicted values are not close enough to
the observed values if

N(d - 0) + (N-1)M(B- 1) >2F2,N2
[2]

where F(2, N-2) is the appropriate upper tail
percentile of Fisher's F distribution with 2
degrees of freedom for the numerator and
N-2 for the denominator.

However, if the standard deviation of
the error is not constant, but is propor-
tional to the predicted value M as some-
times happens, then it would be preferable
to mathematically stabilize the variance by
fitting the linear model to a logarithmic
transformation on both sides, as shown in
H0(5). Note that the logarithmic transfor-
mation of the linear relationship between
Yand Min hypothesis Ho(5) is not the
same as the linear relationship in loga-
rithms shown in Ho(4). In Ho(5), the
hypothesis is that the relationship between
Y and M is linear at all values of M but
will not pass through the origin (Y= 0
when M= 0) unless A= 0. In Ho(4), the
hypothesis is that the relationship between
Yand M always passes through the origin
but is linear only if L = 1. In this respect,
all three hypotheses, H0(3) through H0(5),
test different sets of assumptions.

As with any regression analysis, residuals
should be carefully examined for outliers,
curvilinearity, and trends. Nonlinear

parametric models that include linearity as
a special case can also be used to diagnose
curvilinearity. Analysis of variance tests for
curvilinearity require multiple observations
with the same or similar predicted values.

Two Hypotheses That
Evaluate Intervals or Ranges
Many statistical procedures exist for the
interesting situation in which the hypo-
theses tested involve ranges or intervals of
values. Two are presented here as descriptive
null hypotheses:

Ho(6): The model produces accurate
prediction intervals (90th or 95th for
example)(percent Q) for blood lead.

Ho(7): The model correctly predicts the
number of lead-poisoned children.

These must be translated into testable
statistical hypotheses with an assumption
about the distribution of blood lead. The
model prediction M may be thought of as a
point estimate of blood lead. The prediction
interval defines a range of blood lead con-
centrations within which the specified per-
centage Q of the lead-exposed individuals
with predicted blood lead M are expected.
For the IEUBK model, the Q percent pre-
diction interval is defined by the lines from

M* e(-z log(GSD)) to M * e(z * (log(G,SD))

A formal statistical hypothesis test for
Ho(6) might be based on a multinomial
contingency table assessment that the
intended Q percent prediction interval
contains about Q percent (e.g., 90%) of
the observed blood leads. The total num-
ber of observations (N) is divided into
three groups: L is the number of observa-
tions below the lower line, I is the number
of observations between the prediction
interval lines, and H is the number of
observations above the upper prediction
interval line. Therefore,

N=L +I+H. [3]

The null hypothesis would then have
the form

E{L} = E{H} = N ('°Q) [4]

The statistical translation of Ho(7) is
more difficult. A useful tabular framework
is shown in Table 1. The blood lead level
of concern (LOC) is defined by criteria
described by the Centers for Disease
Control and Prevention (13). Elevated

blood lead means any blood lead concen-
tration that is at least as large as the LOC.
Table 1 uses the following definitions:

A= number of children with observed
and predicted blood leads is less than the
LOC;

B= number of children with elevated
blood lead and predicted blood lead less
than the LOC;

C= number of children with blood lead
less than the LOC predicted to have blood
lead equal to or less than the LOC;

D= number of children with both
observed and predicted elevated blood lead
equal to or less than the LOC.

Many appropriate figures of merit can
be calculated from this table. A and D are
accurate classifications that we wish to
maximize, B and Care inaccurate classifica-
tions that we wish to minimize. In classical
epidemiology terms (14), sensitivity is the
proportion of children with elevated blood
lead that will be classified correctly by the
prediction model (Equation 5), and speci-
ficity is the proportion of children without
elevated blood lead who are correctly classi-
fied by the prediction model (Equation 6).
Many investigators are also concerned
about the false positive rate (proportion of
children classified as likely to have elevated
blood lead who are observed to have non-
elevated blood lead), denoted FPR, and the
false negative rate (proportion of children
classified as likely to have nonelevated
blood lead who are observed to have ele-
vated blood lead), denoted FNR. These
can be calculated from Table 1 as

.. A ASpecificity = (A+C) U

... D DSensitivity = D -
D

(B+D) V

FNR = B B
(A+B) S

FPR = C C

(C+D) T

[5]

[6]

[7]

[8]

There is clearly a trade-off among these
criteria, which can be optimized by com-
bining them into a single index or crite-
rion based on, for example, the costs of
incorrect decisions (B or C) versus correct
decisions (A or D). It is likely that many
public health investigators would prefer to
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Table 1. A 2 x 2 table for empirical comparisons of elevated blood lead.

Observed < LOC Observed > LOC Row sum

Predicted < LOC A B S
Predicted 2LOC C D T
Column sum U V N=total

minimize the FNR. The most obvious
value-free requirement is that the table be
symmetric, i.e., E{B} = EJ C}, where E{ } is
the expected value of the variable (15).
Formulating these hypotheses suggests
useful ways to display data for empirical
comparisons. The next section will dem-
onstrate why we recommend that great care
should be used when actually performing
any of these tests.

Our concerns are not merely hypo-
thetical. Neither the blood lead data used
for comparisons nor the input data used in
model predictions can be assumed to be
without blemish. Errors in data used as
model input can seriously distort formal sta-
tistical tests that may be used in model eval-
uation. Carroll et al. (3) proposed a much
more detailed discussion of these effects.
Summarized briefly, noisy input data can
distort the empirical comparison in either
direction but usually in the direction of
attenuating the apparent predictiveness of
the model. They describe a statistical
methodology for removing some of the
distortion. Stepping through the problem
systematically, we note that differences
between observed and predicted values gen-
erally have greater variability than variability
in the observed values alone, due to input
errors in the predicted values. The model
propagates this uncertainty about input
values into uncertainty about the model
output. The effects may be characterized
mathematically (see Equation 1):

d= observed value-noisy modeled
value, which can be expanded to

d= (observed value- true modeled
value) + (true modeled value- noisy
modeled value).

In general, the second term may be
expected to add both random and system-
atic biases to an empirical comparison
structured like Ho(I) or Ho(2). The conse-
quences are more serious for regression-
structured evaluations such as Ho(3)
through H0(5). Several authors (3,9,16,)
demonstrated that the simple regression of
observed on predicted value with noisy
model predictions caused by input errors
will attenuate the slope (B or L) of the linear
regression of the observed values Yon the
corresponding predictions M. Both the

regression and the correlation coefficients
assume values closer to zero than the true
values, and there would be a corresponding
change in the intercept terms (A or K). The
usual case is that the slope estimate B or L
decreases to a value less than 1, with a corre-
sponding intercept A or Kgreater than zero.
This may imply that model does not ade-
quately predict the observations. Further-
more, regression tests on data with larger
variability and larger standard errors for
parameters may produce lower significance
in hypothesis tests. Tests of a linear versus
nonlinear relationship between Yand M
may also be distorted, usually toward a more
linear relationship than really exists.

Similar effects occur when regression
comparisons are made of logistic (binary)
and categorical (grouped) data. Such tests
are usually performed when numeric dif-
ferences of observed and predicted values
are replaced by indicator variables such as
coding 1 for inside and 0 for outside the
prediction intervals in testing Ho(6).
Likewise, Ho(7) might be evaluated by
coding observed blood lead less than the
LOC as 0 and elevated blood lead as 1, and
regressing these on predicted risk or logits
for elevated blood lead for each subject.
Predictor measurement error will distort
these comparisons.

Finally, even the contingency table
formulations of Ho(6) or Ho(7) shown in
Table 2 are likely to be biased because the
predicted values will be misclassified into
the wrong category.

A Numerical Example: IEUBK
Model Comparisons
We use the dataset that was evaluated by
Hogan et al. (11) to focus the reader's
attention on measurement error correction

and other theoretical aspects of the
methodological issues of comparing model
predictions with observed blood lead data,
not on a particular model or a particular
epidemiology study. The dataset contains
a large number of observations from a
cross-sectional epidemiology study, with
particular emphasis on children less than
6 years of age. We demonstrate several
tests of the IEUBK model. The tests
would be equally appropriate for any other
predictive child blood lead model with
similar input data.

The IEUBK model is intended to
describe the distribution of blood lead con-
centrations expected when all sources of the
child's environmental lead exposure have
been identified. The data, however, only
contain information about the child's resi-
dential lead exposure. Therefore, for the
purposes of demonstrating some of the sta-
tistical evaluation methods described in the
preceding section, we use some ancillary
information (i.e., the number of hours per
week that the caretaker reported the child
as present at home). The majority of cases
were reported to spend all of the time
(168 hr/week) at home. It is highly unlikely
that all these children spent all their time
inside or in the immediate vicinity of their
residence. On the other hand, it is likely
that for most of the time these children
spent in other locations, the lead exposure
was essentially the same. Therefore, we
report only the records for the 282 children
who met these criteria, and which had suffi-
cient data (age, soil lead or house dust lead,
blood lead) to allow calculation of an
IEUBK-predicted blood lead, and empirical
comparison with observed blood lead.

Preliminary Evaluation
and Data Screening
The observed logarithms of blood lead are
shown in Figure 2 against the IEUBK
predictions, with 80% prediction intervals
derived from the IEUBK model run,
assuming the geometric standard deviation
(GSD) of 1.6. The line log(observed) =
log(predicted) is shown at the center of the

Table 2. Observed versus predicted blood lead by level-of-concern category.

Observed blood lead
< 10 10-14 15- 9 20+ Row sum

Predicted blood lead
<10 184 24 9 6 223

10-14 25 4 2 2 33
15-19 8 1 0 2 11

20+ 5 2 0 1 8

Column sum 222 31 11 11 275
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Figure 2. Comparison of observed log(blood lead) vs.
IEUBK model-predicted log(blood lead) in 275 children
who were reported as spending all their time at home.
The upper and lower parallel lines (B,C) represent the
IEUBK 80% prediction interval; the middle parallel line
(A) is the null hypothesis (observed =predicted). Line 0
is the OLS regression line.

interval, corresponding to Ho(5) with K= 0
and L= 1. Figure 2 shows only 275 points.
Based on several tests, we deleted seven
points that appear to be outliers.

Differences between Observed
and PredictedValues
The normal probability plot of the
cumulative distribDution iS shown in Figure
3. The central 68 to 70% (from z=-1 to
z= 1) is nearly linear. The upper and lower
tails, however, are linear with a much flatter
slope. This suggests that the differences are
not normally distributed, but might be the
mixture of at least two roughly normal dis-
tributions, one with much greater variability
than the other.

Empircal Comparisons
Using Counting Data
Tables 2 through 4 show several other
comparisons that may be useful alternatives
in presenting the results. Table 2 indicates
the extent to which the predictions are, on
the whole, unbiased: the number of pre-
dicted values higher than the observed in
any given blood lead category is about the
same as the number of observed values
higher than the predicted values in the anal-
ogous (transposed) category. Table 3
reduces the information in Table 2 into
three 2 x 2 tables, again showing the desired
symmetry or lack of significant bias.

Table 4 shows how the graphical
information in Figure 2 can be used in a
formal test for the adequacy of a prediction

-2

-2 10 0 10 20 3

Observed minus predicted
bhd lead' [L9d]

Figure 3. Cumulative probability plot of the difference,
observed blood lead minus IEUBK model-predicted
blood lead in 275 children who were reported as
spending all their time at home. Vertical axis is on a
normal or Gaussian probability scale (Z score). The
range from Z=+± 1 includes the central 68% of distribu-
tions, and the range from Z=+± 1.96 includes central
95% of distribution.

interval. The visual impression from Figure
2 is that more than 20% of the observations
lie outside the prediction interval. In fact, as
shown in Table 4, only about 55% of the
observations lie inside the 80% prediction
intervals. This suggests, again, that there
may be a subpopulation of children whose
blood lead concentrations do not fit a log-
normal distribution with a GSD of 1.6.

Adjusting te REgesion Test
for Measurement Error
The initial regression results deviate
substantially from the null hypotheses
Ho(3) and Ho(4), with a Figure 1 ordinary
least-squares (OLS) slope of about 0.3 and
an intercept of about 1.2 on the log scale

(3.3 pg/dl). Clearly the hypothesis that the
regression model of Y= A+ B* M+ error
[H0(3)] or its log form [H0(5)] would be
rejected if the slope deviates significantly
from 1 and the intercept from 0. However,
much of this deviation may be attributable
to measurement error.
A useful and quite general method for

dealing with measurement error in non-
linear regression has recently been proposed
and shown to be generally valid (3,17).
This is the SIMEX method. The concept is
very simple: if measurement error biases the
estimate, then adding more measurement
error should increase the bias. The relation-
ship between the expected value of the esti-
mated coefficient (B or L) and the true
coefficient, with and without measurement
error, respectively, can be described well in
large samples by the equation

( + am
[9]

where E{B} =expected value of the
estimated coefficient

p = true coefficient
aM= measurement error standard

deviation of the predictor
ap= standard deviation of the true

predictor.
In this equation, as aM approaches

zero, the expected value of the estimated
coefficient approaches the true coefficient
(p). The true predictors and the true pre-
dictor standard deviation cannot be
observed because they depend on the true
values of the input variables such as the
true time-weighted and soil ingestion
rate-weighted soil lead concentration, the
true time-weighted and dust ingestion

Table 3. 2 x 2 tables of observed versus predicted elevated blood lead.

LOC=10
Predicted Observed

LOC=15
Predicted Observed

LOC=20
Predicted Observed

<10 10+ <15 15+ <20 20+
< 10 184 38 <15 237 16 <20 257 7
10+ 39 14 15+ 19 3 20+ 10 1

Table 4. Comparison of observed blood lead with prediction intervals: 80% prediction intervals with GSD = 1.6.

Number Below interval Inside interval Above interval Total number

Observed 63 145 67 275
Expecteda 27.5 220 27.5 275

aExpected numbers are calculated from 0.1 N below, 0.8 N inside, and 0.1 N observations above the prediction
limits.
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rate-weighted dust lead concentration, and
so on, which cannot be truly measured.
However, if some estimate of the model
standard deviation, ap, is available, then
the observed slopes such as B or L can be
adjusted empirically by fitting the slope
attenuation model to a set of simulated
measurements that are even more noisy
than the real data, and extrapolating the
observations backward to the known or
inferred value of aM, assigned a negative
effect as shown below.

We demonstrate this method as a test of
the linear empirical comparison regression
model, fitted in a logarithmic form, shown
above as Ho(5). The OLS fit to predicted
values would look like a straight line on
nontransformed plot but as a curved line
on a log-log scale. The SIMEX procedure
was carried out by the following steps:

Step 1: Estimate the slope Bp and inter-
cept Bo in a nonlinear least-squares regres-
sion model log(observed blood lead) =
log(BO + Bp* predicted blood lead) + error.
We used SAS PROC NLIN (18).

Step 2: For each predicted value M, gen-
erate a standard normal random variate Z,
and calculate a randomized predicted value
with additional log-normally distributed
error corresponding to M,

rzaA
Mra =M*e( M) [10]

slope is large enough to sustain a good
nonlinear regression model shown in
Step 4.

Figure 5 shows the 25 values of the
intercept Bo fitted by the Ho(5) regression
model to each pair of 275 data values of
the observed blood lead versus simulated
randomized predicted values with extra
measurement error, for each of 10 values of

1.8 -

1.6 -

1.4 -

CL
en
a)

0QZ

1.2

1.0

0.8

0.6 -

0.4 -

0.2 -

0.0

-0.2

Extrapolation zone
(step 4)

I Total input

<error = 0.33

\ \~
"%

'1

IS

Oust exposure
error = 0.22

-0.4 -0.2

aM. Note that when the added error is
small, then the estimated intercept Bo is
only slightly inflated on average from the
nonlinear LS intercept of about 3.3 pg/dl at
aM= 0. However, the intercept estimate Bo
is inflated nearly to the blood lead geometric
mean of 5 pg/dl at the upper end of the
measurement error range. The range of
aM values for the intercept is also large

Simulation zone
(step 3)

Confidence Extrapolation model
= t rntervals /prediction

.....

0.0 0.2 0.4

Added measurement error, c0M
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Figure 4. The slope Bpof the line log(observed)=log(Bo+Bp* predicted) is shown versus the measurement error
standard addition E for 250 simulated replicates of 275 cases. The nonlinear function fitted to Bpfor E .0 is
shown in solid lines to the right of 0.0, along with interpolated 95% confidence intervals. The extrapolated values
are shown in dashed lines to the left of 0.0 for l: <0. The intersections of the vertical lines with the upper and
lower dashed curves show confidence intervals for Bp after adjustment for measurement errors attributable to dust
alone [0.22 = log(1 .25)1 or to all environmental media [0.33 = log(l .39)1.

This assumes that the measurement errors
are log-normally distributed, with median
or geometric mean equal to 1 and GSD =
exp(aM). In these examples, we used aM in
steps of 0.1 from 0.1 to 1.0. Note that aM
is a purely hypothetical value that brackets
the range of plausible measurement error
in log(predicted blood lead) not the log
GSD of the population of true measure-
ment errors or the population of predicted
values M

Step 3: Simulation. Repeat Step 2
many times for each set of N simulated
predictors Mman. Figure 4 shows the 25 val-
ues of the slope Bp fitted by the Ho(5)
regression model to each pair of 275 data
values of the observed blood lead versus
simulated randomized predicted values
with extra measurement error for each of
10 values of GM. Note that when the added
error is small, then the estimated slope Bp
is only slightly attenuated on average from
the nonlinear LS slope at GM = 0. However,
the slope estimate Bp is attenuated nearly
to 0 at the upper end of the measurement
error range. The range of CM values for the
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Figure 5. The intercept B0 of the line log(observed)= log(B0+ Bp* predicted) is shown vs. the measurement error
standard addition "sigma" for 250 simulated replicates of 275 cases. The nonlinear function fitted to BO for l; >0
is shown in solid lines, along with interpolated 95% confidence intervals. The extrapolated values are shown in
dashed lines for E <0. The intersections of the vertical lines with the upper and lower dashed curves show confi-
dence intervals for Bo after adjustment for measurement errors attributable to dust alone [0.22 = log(l .25)1 or to all
environmental media [0.33 = log(l .39)1.
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enough to sustain a good nonlinear
regression model shown in Step 4.

Step 4: Extrapolation. The extrapolation
data set consists of 25 values of simulated
Bo and Bp pairs for each of 10 values of
aYM, and the nonlinear LS fit at aM= 0. We
fitted the following nonlinear extrapolation
models with parameters GO, G1, G2 to the
251 (25x 10+1) values of Bo:

B= [1 1]

and an analogous model with parameters
PO, PI, P2 to the 251 values of Bp,

B =PO+ pi ~~~[12](Pp +a )

The values for the G and P parameters,
which are outputs from the SAS PROC
NLIN using the SIMEX method, are
given in Table 5. The fitted models and
their 95% confidence intervals are shown
in Figures 4 and 5 as the smooth curves,
covering the range of observed and simu-
lated data. Several alternative fits were car-
ried out, evaluating different weights and
variance-stabilizing transformations. The
models shown had weight 25 for the non-
linear LS value and no transformation,
which produced the smallest extrapolation
confidence bands.

The same models were then extrapolated
by subtracting out hypothetical values of
the true standard error. The extrapolation
part of the analysis is shown by the dashed
curves in Figures 4 and 5. These functions
are given by:

extrapolated Bo = Go + G]
e(Go - am

extrapolated Bp = PO + p
(p _lg2)

[13]

[14]

from the smooth-fitted curves. These
functions would expand to Bo= -°o and
Bp= oo as CM approaches G2 or P2. How-
ever, much smaller values of the true mea-
surement error standard deviation aM are
appropriate. The next step is to select the
boundary conditions for AM and apply these
to the Bo and Bp equations using the G and
P parameters generated by the simulation.

The IEUBK model GSD value of 1.6
reflects a composite of measurement input

errors, reflecting: a) environmental exposure
concentration errors, and b) variability in
biologic and behavioral factors reflected by
different absorption coefficients, compart-
ment volumes and transfer coefficients,
intake and ingestion rates, and other idio-
syncratic exposures. Variability in environ-
mental exposure, denoted GSDE, is the
most appropriate component of meas-
urement error to be evaluated for risk
assessment. The environmental media con-
centrations or loadings are usually the most
important health risk determination num-
bers that are factored into site-specific
remediation decisions. Biologic and behav-
ioral variability are unavoidable compo-
nents, but we assume that these can be
characterized together as a log-normal
component with a GSD denoted GSDB.
Assuming that biologic and behavioral
variability are independent of environmen-
tal measurement variability, then the
following model applies:

GSD=eM [15]

GSD = eaB [16]

GSDE = eE [17]

CY2 = 32 + 2
m UB +E [18]

Reasonable ranges for GSDB may be
inferred from other environmental
studies. Almost no human population or
child subgroup study has identified a
residual GSD smaller than about 1.3 to
1.4, which is a reasonable range for
GSDB. Furthermore, simulation studies
on the propagation of measurement error
through the IEUBK model (19) suggests
that with reasonable uncertainties in dust
lead alone, dust lead measurement error
can induce a range of variability in pre-
dicted blood lead with a GSDE of about
1.25 to 1.35, whereas with uncertainty in
correlated dust lead and soil lead, a rea-
sonable GSDE is in the range 1.35 to
1.45. In Table 6, we show a small set of
possible GSDB values within the probable
range, and the corresponding values for
GSDE. The total measurement error
shown in Figures 4 and 5, 6M= (YE
=0.33=log(1.39), is a reasonable choice.
From Equation 13 the estimate of Bo is
not significantly different from 0, and
from Equation 14, the estimate of Bp is
not significantly different from 1, by
conventional standards.

The relationship between observed
blood lead and values predicted from the
IEUBK model was much closer to the
appropriate null hypothesis when the

Table 5. Extrapolation parameters (G and P) from nonlinear least-squares analysis.
Alternative
hypothesis Hypothesis Extrapolation Value at Value at
model parameter Parameter Fstimatea GM= 0.33 aM= 0 Maximum GM

Ho(4)
log-log Lo Go 1.712 0.50 1.05 0.40

G, -0.158
G2 0.239

Lp P0 0.001 0.70 0.38 0.41
P, 0.0885
P2 0.236

Ho(5)
log of linear Bo Go 5.85 0.21 3.47 0.44

G, -0.472
G2 0.198

Bp Po -0.031 1.00 0.41 0.44
P, 0.0856
P2 0.1922

aAssuming lead in dust greater than 2000 ppm imputed at 2000 ppm.

Table 6. Sensitivity analyses for environmental measurement error.

GSD G=log (GSD) GSDB aG= log (GSDB) GEa GSDE
1.6 0.4700 1.30 0.2624 0.3900 1.4770
1.6 0.4700 1.35 0.3001 0.3617 1.4357
1.6 0.4700 1.40 0.3365 0.3282 1.3884

8fSf was calculated from equation 19: aE = ;ff2 2.GaE was calculated from equation 1 9: eFr, - (T.
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linear regression models were adjusted for
measurement error. The two models
[hypotheses Ho(4) and Ho(5)] are com-
pared in Figure 6. Hypothesis H((4)
assumes a linear regression for log(observed
blood lead) versus log(model blood lead),
and hypothesis H0(5) assumes a linear rela-
tionship between observed and modeled
blood, which is fitted after logarithmic
transformation of both sides.

On the log-log plot of Figure 6, the
hypothesis Ho(4) alternatives are straight
lines. Note that when there is no adjust-
ment for measurement error, the unad-
justed OLS fit has an intercept of 0.9 and a
slope of 0.4, whereas after adjustment for
measurement error with log(GSD) = 0.33,
the SIMEX adjustment gives an intercept
of 0.5 and a slope of 0.7. This is much
closer to null hypothesis, although the dif-
ference between observed and predicted
blood lead is still substantial for some risk
assessment applications. A measurement
error GSD larger than 1.4 in the model
values would be needed to bring the curves
closer, and cannot be justified based on
empirical evidence discussed earlier.

The hypothesis Ho(5) alternatives are
curved lines on Figure 6. Note that when
there is no adjustment for measurement
error, the OLS fit gives an intercept of 3
and a slope of 0.47, whereas after adjust-
ment for measurement error with
log(GSD) = 0.33, the SIMEX adjustment
gives am intercept of 0.2 and a slope of
1.0. This is much closer to null hypothesis
line (observed = predicted), with an

3.0

2.5
CD

> 2.0C,
0

0.5 E

A

0 0.5 1.0 1.5 2.0 2.5 3.0

Log-predicted blood level, log/dI

Figure 6. The application of the SIMEX measurement
error correction procedure to two hypotheses, H0(4)
and H0(5). Line A is the theoretical condition where
observed = predicted (intercept = 0, slope = 1 ). Lines B
and C are the uncorrected and corrected forms of H0(4),
and lines D and E are the uncorrected and corrected
forms of Ho(5).

expected intercept of 0 and slope of 1.0,
and the difference between observed and
predicted blood lead using this measure-
ment error correction method is negligible
for risk assessment applications. A mea-
surement error GSD of about 1.4 in the
model values seems to be appropriate. The
IEUBK model is only slightly nonlinear at
blood lead less than 25, so that the family
of linear alternatives in hypothesis Ho(5)
may be more realistic. An important aspect
of this procedure is that no individual
observed values were changed. The vari-
ability due to measurement error was
enhanced by a method similar to standard
additions, then extrapolated to a pre-
selected value for the GSD using an equa-
tion derived from a SIMEX application of
SAS PROC NLIN.
We may therefore accept the statistical

hypothesis and conclude that with correc-
tions for measurement error, the IEUBK
model provides a satisfactory prediction of
typical blood lead concentrations for chil-
dren exposed to residential lead in this resi-
dential situation. This process also raises
the possibility that there is a small subpop-
ulation of children with blood lead concen-
trations either much higher or much lower
than those predicted by the model with a
standard GSD of 1.6.

Conclusions
Hypothesis tests can be a useful statistical
tool for model validation. Several forms of
statistical hypotheses were presented that
are structured to show the level of confi-
dence that the hypothesis is not rejected.
Although they can never show that a
model is right (model verification), these
hypothesis tests can be used to show that a
specific application of the model is not
wrong. In this sense, model validation is a
process of adding strength to our belief in
the predictiveness of a model by repeatedly
showing that it is not blatantly wrong in
specific applications.

When a statistical test of observed versus
predicted values fails to achieve the desired
level of confidence, the problem may be
with the observed data (usually the result of
measurement error) or the model code (usu-
ally the specification of one or more key
parameters). Recent developments in the
statistical field of measurement error correc-
tion (3) have provided a tool for reducing
the apparent effects of measurement error in
the regression model.

In a single application of this measure-
ment error correction procedure, this
report has shown that hypothesis tests

performed after measurement error cor-
rection can reverse the conclusion from
rejection to acceptance of the statistical
hypothesis, thus further validating the
model and increasing the confidence that
the model is not wrong. It is important to
note that the measurement error correc-
tion procedure does not adjust any specific
observation or drop any observation from
the dataset. It uses the method of standard
additions to adjust the slope and intercept
of the regression between observed and
predicted values.

Multiple regression models and related
multiequation structural equation (pathway)
models may require more sophisticated
approaches. The study of measurement
error effects using latent variable methods
(20) is time consuming and labor inten-
sive, requiring computer tests of several
hours to days in length, using standard sta-
tistical packages such as SAS PROC
CALIS (18). Unfortunately, intrinsically
nonlinear models cannot be handled with
existing packages.

There is also a need to evaluate and
rank different model specification tests for
empirical models when predictor variables
are error-prone. Some recently developed
methods for comparing different struc-
tural equation model specifications use
residual curvilinearity (21). The effects of
design matrix measurement errors on
specification tests using residuals or
studentized residuals from not-so-large
samples is unknown. Cross-validation and
bootstrap methods ought to be useful but
may also need adjustments for measurement
error effects.
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